Scaling in Small-World Resistor Networks
نویسنده
چکیده
We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, l−α. In this case we find that the average effective system resistance diverges for any non-zero value of α.
منابع مشابه
Percolation-Induced Exponential Scaling in the Large Current Tails of Random Resistor Networks
There is a renewed surge in percolation-induced transport properties of diverse nanoparticle composites (cf. RSC Nanoscience & Nanotechnology Series, Paul O’Brien Editor-inChief). We note in particular a broad interest in nanocomposites exhibiting sharp electrical property gains at and above percolation threshold, which motivated us to revisit the classical setting of percolation in random resi...
متن کاملCritical Behavior of Random Resistor Networks Near the Percolation Threshold
We use low-density series expansions to calculate critical exponents for the behavior of random resistor networks near the percolation threshold as a function of the spatial dimension d. By using scaling relations, we obtain values of the conductivity exponent μ. For d=2 we find μ=1.43±0.02, and for d=3, μ=1.95±0.03, in excellent agreement with the experimental result of Abeles et al. Our resul...
متن کاملCritical Behavior of Random Resistor Networks
We present numerical data and scaling theories for the critical behavior of random resistor networks near the percolation threshold. We determine the critical exponents of a suitably defined resistance correlation function by a Padé analysis of low-concentration expansions as a function of dimensionality. We verify that d=6 is the critical dimensionality for the onset of mean-field behavior. We...
متن کاملSmall-world Structure in Children’s Featured Semantic Networks
Background: Knowing the development pattern of children’s language is applicable in developmental psychology. Network models of language are helpful for the identification of these patterns. Objectives: We examined the small-world properties of featured semantic networks of developing children. Materials & Methods: In this longitudinal study, the featured semantic networks of children aged 1...
متن کاملResistance fluctuations in randomly diluted networks.
The resistance R(x,x’) between two connected terminals in a randomly diluted resistor network is studied on a d-dimensional hypercubic lattice at the percolation threshold pc. When each individual resistor has a small random component of resistance, R(x,x’) becomes a random variable with an associated probability distribution, which contains information on the distribution of currents in the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005